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Abstract The use of computer simulation to understand how human faces age has been a
growing area of research since decades. It has been applied to the search for missing children
as well as to the fields of entertainment, cosmetics and dermatology research. Our objective
is to elaborate a model for the age-related changes of visual cues which affect the percep-
tion of age, so that we may better predict them. Traditional approaches based on the Active
Appearance Model (AAM) tend to blurry appearance and wipe out texture details such as
wrinkles. We introduce Wrinkle Oriented Active Appearance Model (WOAAM) where a
new channel is added to the AAM dedicated to analyze wrinkles. Firstly, we propose to rep-
resent both the shape and texture of each wrinkle on a face by a compact and interpretable
vector. Afterwards, to model the distribution of wrinkles on a face, we introduce a new way
to approximate an empiric joint probability density by creating an ensemble of joint proba-
bility densities estimated by Kernel Density Estimation. Finally, we show how to create new
samples from such an ensemble of densities, and thus synthesize new plausible wrinkles. In
comparison to other methods which add wrinkles at post-processing level, our method fully
integrates them in AAM. Thereby, the wrinkles generated are statistically representative of
a specific age in terms of number, length, shape and intensity. With an age estimation Con-
volutional Neural Network, we found that age-progressed faces produced by the WOAAM
better reduces the gap between the expected age and the estimated age than those produced
by a classic AAM.
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2 Chanel, 8 rue du Cheval Blanc, Pantin, 93500, France

 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-018-6311-z&domain=pdf
http://orcid.org/0000-0002-8619-6897
mailto: victor@vmartin.fr


6310 Multimed Tools Appl (2019) 78:6309–6327

1 Introduction

Age progression has been an ever-growing field for several decades. It has been applied
to the search for missing children [28, 30], entertainment [32], cosmetics [1, 3] and der-
matology research [1, 24]. In this kind of applications, artificial facial aging must consider
age-related morphological changes as well as skin appearance modifications in order to pro-
vide realistic results. The most dramatic change of the face with age is morphological and
results from facial growth; it occurs from birth to early adulthood [8]. Another age-related
morphological modification concerns the facial volumes due to fat distribution variations;
they vary all along life, from birth to late adulthood [7]. During adulthood facial skin also
undergoes dramatic changes with age, including wrinkling and sagging, increases of pig-
mented irregularities [39]. All these skin age-related features are keys in the perception of
facial age in adults [5, 9, 22, 27]. Our objective is to elaborate a model for age-related
changes of visual cues on older women faces affecting age perception to better predict
them. As we will see in the next section, lots of age progression methods change shape and
appearance without incorporating specific aging signs such as wrinkles.

For this reason, we propose WOAAM (Wrinkle Oriented Active Appearance Model): we
base our work on the Active Appearance Model to simulate facial aging (Section 2.1 p. 3),
to which we incorporate a specific channel to analyze and synthesize wrinkles (Sections 2.2
and 2.3 p. 4–5) before explaining the computation of an aging trajectory (Section 2.4 p.
7). Afterwards, we will show images resulting from the aging and rejuvenating of faces
(Section 3.1 p. 8), and finally, that this approach increases/decreases perceived age more
precisely than the unmodified Active Appearance Model, tested with an age estimation
Convolutional Neural Network (Section 3.2 p. 8).

1.1 Related works

Given the diversity of potential applications of facial aging and the growing variety of computer
vision techniques, many methods have been developed in recent decades [10, 21, 36].

Ramanathan and Chellappa [23] propose a craniofacial growth model to analyze shape
variations due to age for children under 18 years of age. Shapes are defined by a set of facial
landmarks, and a model of facial deformation for aging during childhood is introduced.
Then, faces are warped according to the deformation model to rejuvenate or age. This model
permits them to estimate an age based on a face and to mock-up the face aging process for
children. This model only takes on board shape variations because that is considered the
principal source of variations from birth to adolescence.

When elaborating a model for facial aging during adulthood, in addition to shape, tex-
ture changes also need to be considered. The work of Lanitis et al. [16, 17] is the first to use
Active Appearance Model on age progression. They use AAM to create a subspace mod-
eling both texture and shape variations of faces. Regression of coordinates from this newly
created space on age indicates the direction of facial aging. Finally, they can project a new
face in this subspace, translate it in the face aging direction and reconstruct a shape and
texture to obtain an aged appearance. Nevertheless, AAM-based age progression is known
to produce a blurry texture because wrinkles and spots are never perfectly aligned between
people.
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Facing this problem, more recent approaches [4, 35] use AAM to produce appear-
ance and shape, and add a post-processing step on appearance to superimpose patches of
high-frequency details. While faces produced are plausible, details added are not statisti-
cally learned for age progression, as texture patches that contain details are chosen with a
similarity measure, and not with respect to a precise age.

Jinli Suo et al. [13] divide faces into several patches to create an And-Or graph containing
every patches at five age intervals, spaced over ten years. And nodes represent different
parts of the face, whereas Or nodes represent the different realizations of these parts for
the population in every age group. They use a first order Markov chain to model aging of
parts of the face. Wrinkles are annotated and their properties (numbers, lengths, positions...)
are modeled by a Poisson distribution, for each property. Artificial aging can be created
by decomposing a face, present in age group t, in a And-Or graph Gt, and to sample the
probability p(Gt+1 | Gt) with Gibbs sampling algorithm; the graph Gt+1 can be collapsed
to generate a new face.

Another approach creates a prototype [5, 26], an average face from faces within a con-
strained age group, meant to represent typical features from this group. A younger face can
be then warped in the mean shape, and the prototype blended on the texture of the younger
face to make it look older. As for AAM-based methods, prototype-based methods suffer
from the same problem; making an average face will blur out every non-aligned high fre-
quency detail. Tiddeman et al. [33, 34] propose to add a post-processing step to enhance
high frequency information on the average face. They extract fine details with wavelet
decomposition [33] for every face to add them on the final average face, with a parameter σ

controlling the level of details to transfer. In [34], they combine wavelet decomposition with
Markov Random Field to regenerate fine details on the average face, which produces more
realistic results. Although having more wrinkles, the final results are not completely real-
istic nor completely facial aging oriented, as details generated are not chosen with respect
to age.

Shu et al. [29] propose to encode aging pattern of faces in age-group specific dictionar-
ies. Every two neighboring dictionaries are learned jointly taking into consideration extra
personalized facial characteristics, e.g. mole, which are invariant in the aging process. How-
ever, faces produced are still blurry and no wrinkles appear, even for long-term aging (+40
years).

Promising approaches [2, 20, 37, 38, 40] propose to use Deep Neural Networks to
produce aged faces.

Antipov et al. [2] propose age conditional Generative Adversarial Network (acGAN).
Generative Adversarial Networks (GAN) are known to produce images with sharper tex-
tures because the reconstruction metric is not defined in the pixels space, but in the latent
variables space. They combine a GAN with a face recognition neural network to preserve
identity during reconstruction and aging.

Wang et al. [37, 38] introduce a Recurrent Face Aging (RFA) framework using a Recur-
rent Neural Network which takes as input a single image and automatically outputs a series
of aged faces.

Zhang et al. [40] presented Conditional Adversarial Autoencoder (CAAE). They use
an Autoencoder combined with 2 discriminators working on latent variables and output
images to impose photo-realistic results. The first discriminator Dz imposes latent variables
z to be uniformly distributed to avoid “holes” in the latent space, and thus to produce a
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smooth age progression. The second discriminator Dimg , inspired by the GAN architecture,
discriminates between real images and generated images, and its loss is used to improve
the photo-realism of pictures. Age progression is achieved by regressing the latent variables
with respect to age.

However, age progression algorithms based on neural networks can produce in some
cases unrealistic faces (e.g the 2 eyes of a reconstructed face can have different shapes). In
addition, lots of these algorithms work on low resolution faces, at most 128 × 128 [2, 20,
40]. Thus, as the used faces are too small to show fine details, these face aging systems
cannot generate faces with fine wrinkles.

In addition to facial aging, many applications aim to estimate age from faces.
Early works have been made by Kwon and Lobo [14, 15]; they computed several distance

ratios between landmarks at specific locations on faces to distinguish between 3 age classes,
babies, young adults, and seniors.

Lanitis et al. [17, 18] proposed to obtain a compact parametric description of face images
using Active Appearance Model and to use this description to estimate ages. Shapes are
normalized with Procrustes Analysis and parametrized with Principal Component Analysis.
Thereafter, faces are warped in the mean shape before being also parametrized with Prin-
cipal Component Analysis. Shape and appearance parameters are then concatenated and
a third Principal Component Analysis is performed. Finally, the authors tested a range of
classifiers and regressions like linear regression, quadratic regression, cubic regression, and
artificial neural network.

Guo et al. [11] proposed the Biological Inspired Features. Face images are firstly
convoluted with several Gabor kernels extracting specific details in terms of scales and ori-
entations. Secondly, the result undergoes a max pooling compensating for small translations
and small rotations. Finally, the pooled feature is used with Support Vector Machines to
estimate age with a low Mean Absolute Error.

Recent uses of deep convolutional neural networks have demonstrated great performance
and robustness on big datasets with large variations in pose and illumination. Rothe et al.
[25] proposed to use the ConvNet VGG-16 [31] pretrained on the ImageNet database for
image classification. Thereafter, they finetuned it with a database of 500k celebrity faces
to estimate biological age. Finally, they finetuned it again on the database of the ChaLearn
LAP 2015 challenge which they won.

In view of the current state of art and our constraints, we base our work on the Active
Appearance Model to simulate facial aging (Section 2.1 p. 3), to which we incorporate
a specific channel to fully integrate wrinkles (Section 2.2 p. 4); in this subspace, com-
puted aging trajectories will take into account shape, appearance and wrinkles, differing
from other methods which use classic AAM and add a post-processing step to include
wrinkles.

Afterwards, we detail how to synthesize aged faces from our new wrinkle oriented AAM
(Section 2.3 p. 5) before explaining the computation of an aging trajectory (Section 2.4 p. 7).

Finally, we propose to study the quality of our aging system by presenting images result-
ing from the aging and rejuvenating of faces (Section 3.1 p. 8). Then, we show that this
approach increases/decreases perceived age more precisely than the unmodified Active
Appearance Model with an age estimation convolutional neural network (Section 3.2 p. 8).

To analyze faces in the light of facial aging, we propose 3 contributions.
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The first contribution is the parametrization of each wrinkle where shape and texture are
represented altogether by a very understandable 7-length vector. Conversely, such a vector
can be used to produce a wrinkle in shape and texture just from parameters.

To represent a group of wrinkles in one facial zone, we propose an approximation of an
arbitrary joint probability of n random variables, as the set of every joint probability for
every random variable taken two at a time; that is our second contribution.

Our third and last contribution is a new method of sampling for our approximated density
mentioned above.

2 Proposed method

We propose a parametric model based on an Active Appearance Model (AAM) able to
project a face in a latent space integrating high frequency facial details such as wrinkles.
The face is transposed in this latent space, in a direction identified as an aging direction,
and reconstructed to synthesize an aged face.

We will firstly describe AAM (Section 2.1), before explaining how to integrate high-
frequency details like wrinkles (Section 2.2) and synthesize them (Section 2.3). Finally, we
will present how to identify an aging trajectory in the latent space and use it to make a face
look younger/older (Section 2.4).

2.1 Active appearance model

Active Appearance Model [6] is a statistical model which creates a subspace modelling
appearance and shape variations in an annotated dataset of faces.

For shape, we put landmarks on key points, and afterwards, a Procrustean analysis is
performed to align shapes on the mean shape using translation, rotation and homothety.
Appearance information is then computed by warping every image into the mean shape,
using each individual annotation.

After that, according to the AAM algorithm, Principal Component Analysis (PCA) is
carried out separately for shape and appearance, and a final PCA is made on the concate-
nation of shape weights and appearance weights. This creates a subspace, which models
variations present in the dataset of shape and appearance (see Fig. 1). Because the PCA has
the advantage of being perfectly invertible, we can reconstruct a shape and an appearance
from any point in the newly created subspace.

Fig. 1 AAM Scheme
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Fig. 2 Wrinkle Oriented AAM Scheme

2.2 Analyzing wrinkles

As mentioned in [4], aged faces produced by AAM will always seem blurry. This is because
high frequency details, like wrinkles, must be perfectly aligned between faces for the PCA
to capture their variations and thus to reconstruct them.

We propose a new framework (Fig. 2), first to represent each wrinkle by a compact
vector (Section 2.2.1), and after that to represent all wrinkles on a face by a feature vector
which is robust enough for PCA and thus able to still retain wrinkle information after PCA
reconstruction (Section 2.2.2).

2.2.1 Wrinkle model

We propose a separate model to analyze the shape and texture variations of wrinkles.
First, wrinkles are annotated with 5 points for each wrinkle. Afterwards, these 5 points

are transformed into more explainable pose parameters containing:

– center (cx, cy) of wrinkle
– length � which is equal to the geodesic distance between the first point and the last

point of annotation
– angle a in degrees
– curvature C computed as least squares minimization of

min ‖ Y − CX2‖2
2 (1)

with Y (resp. X) the ordinates (resp. abscissa) of the wrinkle centered with the origin,
and with first and last points horizontally aligned.

Here we just transformed the shape of a wrinkle in a 5-length vector (cx, cy, �, a, C).
In addition, each texture wrinkle is extracted by making a bounding box around annota-

tion and only keeping high frequency information by Difference of Gaussians (see Fig. 3).
Here we blur texture with parameter σb = 6 and subtract blurring result with the untouched
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Fig. 3 High frequencies extraction. Left: original image. Middle: Image Gaussian blurred with σb = 6.
Right: Difference of Left and Middle Image to extract high frequencies. The parameter σb is relative to image
resolution (i.e higher resolution implies higher σb), and can be found empirically

texture to make a high-pass filter and extract wrinkles. This filter has the advantage of being
able to reconstruct perfectly the original image by simply summing the low and high fre-
quency versions of the image. Here, as the wrinkle is high frequency information, we only
keep the high frequency image and drop the low frequency version which contains skin color.

After that, wrinkle appearance is warped in the mean shape and then transformed in pose
parameters. A second derivative Lorentzian function (Eq. 2) is fitted on each column and
the average of every parameter found by fitting is kept (Fig. 4).

A ∗ 2σ
(
3 (x − μ)2 − σ 2

)

(
(x − μ)2 + σ 2

)3
+ o (2)

where μ and σ are respectively location and scale of the second derivative Lorentzian func-
tion, and, A and o are tweaking parameters to adjust the curve. Only A and σ are kept to
characterize respectively depth and width of wrinkles.

Thus, we constructed a model able to transform a wrinkle in a set of 7 understand-
able parameters (cx, cy, �, a, C, A, σ ), 5 for shape and 2 for appearance. On a side note,
we can say that other pose parameters could have been computed. Taking the curvature
parameter C as minimization of (Eq. 1) is implicitly modeling wrinkle shapes as second
order polynomials. For more accurate but more complex modeling, third or fourth order
polynomials, or any parametric curve, could be used. Also, concerning appearance pose
parameters, our modeling implicitly defines wrinkles as having uniform intensity and width.
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Fig. 4 Texture Fitting Example. Left: warped wrinkle; fitted column is highlighted. Right: in blue the pixels
intensity variations and in green the fitting result
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Instead of taking the average parameters (A, σ ), several parameters (Ai, σi) could have been
taken at different locations for each wrinkle appearance.

2.2.2 Robust feature

The objective remains to obtain a representation of wrinkles for each face and to analyze
them by applying PCA. As people have different numbers of wrinkles, we cannot just com-
pute parameters for each wrinkle in a face and concatenate them to create a fixed-length
representation usable with PCA. We have to find a fixed-length representation vector of
wrinkles for each face.

We propose to estimate the probability density modeling the structure of wrinkles for
each face and each zone.

Using the system introduced in Section 2.2.1, each wrinkle is represented by a 7-length
vector. We divide faces into 15 zones (forehead, nasolabial folds, chin, cheeks. . . ), aiming
to compute a joint probability P(d1, . . . , d7) of wrinkles from each zone and each face.
Unfortunately, such joint probabilities can have a very large memory footprint because of
dimensionality, as the memory size of densities grows exponentially with dimensionality.
To circumvent this problem, we propose an approximation of an arbitrary joint probability
of n random variables by computing every joint probability for every random variable taken
two at a time (Fig. 5). More precisely, we propose to approximate P(d1, . . . , dn) by the
set {P(d1, d2), P (d1, d3), . . . , P (dn−1, dn)}. From now, when the number of dimensions n

grows linearly, work memory no longer grows exponentially but quadratically �(
n(n−1)

2 ).
Joint probabilities are computed by Kernel Density Estimation (KDE) with a Gaussian

kernel of standard deviation σkde = 1.5 for 60x60 densities; σkde parameter controlling the
tradeoff between accuracy of wrinkles representation with a low σkde, and generalization
with a higher σkde.

Thus, for one face, we propose to extract a vector containing, for each of the 15 zones:

– number of wrinkles nw in current zone,
– average wrinkle,
– densities computed with KDE on wrinkles where the average wrinkle was subtracted,

and to concatenate all 15 vectors to create the representation of wrinkles in one face.
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Fig. 5 Ensemble of joint probabilities for the frown lines for one person. With n = 7, there are n(n−1)
2 = 21

densities; however, we only show 10 densities for convenient purpose
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Fig. 6 The first two values of p are found by peak detection (the green point)

2.3 Synthesizing wrinkles

We now have a representation of wrinkles that we are able to incorporate in the classic AAM
as seen on Fig. 2. PCA being perfectly invertible, we can reconstruct a shape, an appearance
and a wrinkles representation vector from any point in the final PCA space. However we
must define how to generate wrinkles from our wrinkles representation vector.

We propose a new sampling method able to extract plausible wrinkles from our wrinkles
representation vector, which is composed of joint probabilities. Algorithm’s main point is
finding a point iteratively, dimension after dimension, whose projections in each density is
above a probability threshold; the threshold is decreased from 0.9 to 0.1 progressively to
find the best candidate; precise algorithm is available on the Appendix page 16.

First of all, peaks are found in P(cx, cy) and SAMPLE function is called for each peak
found with a peak as parameters px and py , from the peak with highest probability to the
lowest.

We will present a step-by-step running of the function SAMPLE for a given peak (39, 41).
A vector p = (39, 41, 0, 0, 0, 0, 0) is created which will contain the point’s coordinate
created by the function (Fig. 6).

After that, function GET ARGMAX MIN will extract two 1-D densities, P(cx = 39, �)

and P(cy = 41, �), apply the minimum operator element-wise on them, and finally find
the coordinate with highest probability ii such as ii = argmax (min (P (cx = 39, �) ,

P (cy = 41, �)
))

(Figs. 7 and 8). With p3 = ii, if P(p3) is below the reference Pref = 0.9,
Pref is decreased at 0.8; otherwise the search for p4 begins with Pref still equals to 0.9 and
p = (39, 41, p3, 0, 0, 0, 0).

Fig. 7 The algorithm has to
assign p3 a value that maximizes
the probability in P(cx = 39, �)

and P(cy = 41, �)

Cy

C
x

C
x

C
y

p=(39, 41, ?, ?, ?, ?, ?)
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Fig. 8 The two extracted red lines on Fig. 7 are the first two curves at the top, the third curve is the result of
the element-wise minimum operator. We find that the maximum is obtained for � = 1

Here, p3 = 1 and P(p3) = 0.52, so Pref is sequentially decreased from 0.9 to 0.8, then
0.7, then 0.6, and finally 0.5, where the value of P(p3) is accepted and the search for p4
begins with Pref equals to 0.5 and p = (39, 41, 1, 0, 0, 0, 0).

For p4, the same processing is made with the three 1-D densities P(cx = 39, a),
P(cy = 41, a) and P(� = 1, a). With p4 found (Figs. 9 and 10), if P(p4) is below the ref-
erence Pref = 0.5, then backtracking starts: P(cx = 39, � = 1) and P(cy = 41, � = 1)

are set to 0 and a new p3 has to be found; otherwise the search for p5 begins with
p = (39, 41, 1, p4, 0, 0, 0).

Fig. 9 The algorithm has to
assign p4 a value that maximizes
the probability in P(cx = 39, a),
P(cy = 41, a) and P(� = 1, a)
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Fig. 10 The three extracted red lines on Fig. 9 are the first three curves at the top, the fourth curve is the
result of the element-wise minimum operator. We find that the maximum is obtained for a = 25

As the algorithm keeps running, more and more cases are explored to finally get a point
p which maximizes probabilities in densities given the starting peak (px, py), and thus
corresponds to a plausible wrinkle.

The wrinkle representation vector contains the number of wrinkles nw to generate, the
average wrinkle and the densities. We can create the nw wrinkles parameters by running
this algorithm nw times and adding them to the average wrinkle.

Afterwards, we trivially have to produce wrinkles shape and texture from parameters (see
Section 2.2.1 p. 4 for definition of these parameters).

Shape is created from (cx, cy, �, a, C) by sampling the polynomial defined by the cur-
vature C until the specified geodesic length � is reached. After that, points composing the
shape are rotated according to angle a and finally center (cx, cy) is added to shape.

Texture is produced by creating an empty image and variations of a second derivative
Lorentzian function (see Eq. 2) of parameters (A, σ ) are affected to each column.

Finally, texture is warped in the newly created shape, for every wrinkle, and wrinkles are
subsequently blended by merging the gradient of wrinkles with gradient of the underlying
face (Fig. 11).

Fig. 11 Before and after aging wrinkles under the left eye. As we can see, the method doesn’t produce any
artifact nor suppress micro-texture
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2.4 Aging trajectory

The final PCA subspace of the system (Fig. 2) models variations of faces in shape, appear-
ance and wrinkles where original pictures are projected, and can be back-projected and
perfectly reconstructed as we keep all components. As we can see in Fig. 2, we drop the
final PCA from the classic AAM (Fig. 1). As PCA is unsupervised, the PCA algorithm
could combine on a same component, variations correlated with age and others uncorre-
lated with age, perturbing the following trajectories computation part. In that respect, we
keep the first 3 PCAs, reducing dimensions of our data and thus making the computa-
tion of trajectories possible, and drop the last PCA. As a consequence, PCA weights W in
the final subspace correspond to the concatenation of PCA weights from the 3 channels:
(Wshape,Wappearance,Wwrinkles). As our objective is to identify variations correlated with
perceived age, we have to make a regression f of PCA weights W on perceived ages A.
We decided to make a cubic polynomial regression to model facial aging in our case, as this
choice gave us the best results:

f (W) = AT W 3 + BT W 2 + CT W + D = A (3)

To make a face with a perceived age a look older/younger of y years, we have to project
it on the final subspace to obtain weights Wcurrent , apply this formula:

Wnew = Wcurrent + (f −1(a + y) − f −1(a)) (4)

with f −1(a)=Wmean,a and reconstruct a new face from Wnew. As multiple different faces can
match the same age, f −1(a) will return the average PCA weights Wmean,a of this specific age.

Just as [17], we make a Monte Carlo simulation to inverse f : we generate a lot of plausi-
ble weights W ; the corresponding age for each weight w ∈ W is found by applying f (w),
and f −1 is a lookup table where for a given age a, f −1(a) is an average of all weights
Wa ⊂ W as such f (Wa) = a.

3 Analyzing results

In this section, we first present examples of aged and rejuvenated faces resulting from our
model (Section 3.1), and after that we quantify the correlation between age progressed faces
and the perception of these faces by an independent age estimation algorithm (Section 3.2).
We show that our system is better correlated with the perception of age than the classic
AAM (Section 3.2.2).

Our database consists of 400 Caucasian women taken in 2014, in frontal pose with a
neutral expression and with the same lightning (Fig. 12). All faces are resized to 667×1000

43.6 72.1 58.4 61.8 66.3 46.2

Fig. 12 A subsample of our database with their corresponding perceived ages
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resolution and annotated with 270 landmarks to locate eyebrows, eyes, mouth, nose, and
facial contour. In addition, 5 landmarks are placed on each wrinkle. Each face has been
rated by 30 untrained raters to obtain a precise perceived age; perceived ages in the dataset
range from 43 to 85 years with an average of 69 years.

3.1 Qualitative results

As seen on Fig. 13, aging changes several known cues on a face [7, 8, 39].
Concerning shape, the size of the mouth is reduced, especially the height of the lower

mouth; eyebrows and eyes are both reduced as well, and we can see facial sagging at the
lower ends of the jaw.

Concerning appearance, the face globally becomes whiter and yellowish, eyebrows and
eyelashes are less present, and the mouth loses its red color as aging progresses.

With aging, more wrinkles appear and existing wrinkles are deeper, wider and longer. As
we can see, new wrinkles created by our system are plausibly located with realistic texture.

3.2 Quantitative results

3.2.1 Age estimation

As in [25], we employ a pre-trained VGG-16 CNN [31] to create a face representation less sen-
sitive to pose and illumination : we feed a picture as input where the face has been cropped
and the representation produced is the output from block5 pool, the last pooling output.

Afterwards, a Ridge regression is made in a 40-fold manner. As seen on Fig. 14, we
obtain a R2 score of 0.92 and an average absolute error and maximum absolute error of
respectively, 2.8 years and 13.7 years. On the very same database, the average human

Fig. 13 Face aging results. Left: Rejuvenating of 20 years. Middle: Original. Right: Aging of 20 years
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Fig. 14 Performance of our age estimation algorithm

estimates perceived age with an average absolute error and maximum absolute error of
respectively, 5.5 years and 17.1 years.

3.2.2 Comparison with prior works

For this experiment, we compare the perception of aged faces and the perception of
rejuvenated faces for Active Appearance Model (AAM) [17], Conditional Adversarial
Autoencoder (CAAE) [40] and our method Wrinkle Oriented Active Appearance Model
(WOAAM). To test facial aging, we use faces with a perceived age of less than 60 years,
and, for rejuvenating faces, a perceived age of 70 years and more. For AAM and WOAAM,
each face is aged/rejuvenated 2 years at a time, and we compare, on average, the difference
between estimated and expected age. For CAAE, each face is aged/rejuvenated 10 years at a
time because this method use 10 discrete labels, and each label account for a 10-year interval.

Fig. 15 Perception of faces aged of y years, in function of y going from 0 to 30 years, for the classic AAM,
CAAE, and our Wrinkle Oriented AAM
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Fig. 16 Perception of faces rejuvenated of y years, in function of y going from 0 to -30 years, for the classic
AAM, CAAE, and our Wrinkle Oriented AAM

As we can see on Figs. 15 and 16, our method produces faces that are perceived as older
than classic AAM and CAAE for aging, and younger for rejuvenating. In other words, a
facial aging with WOAAM of y years better reduces the gap between the expected age and
the age estimated by the age estimation system than a classic AAM or CAAE. For a 10-year
aging period, the estimation of age has increased by 4.9 years for WOAAM, by 3.4 years for
AAM, and by 2.9 years for CAAE. Also, for a 10-year rejuvenating period, the estimation
of age has decreased by 4 years for WOAAM, by 2.3 years for AAM, and by 1.5 years for
CAAE. On average, we improved performance by a factor of 1.5 over AAM, and by a factor
of 2.5 over CAAE.

However, we can note that for a 10-year period of aging and rejuvenating, the estimation
of age has been altered too slightly: respectively, by only 4 years and -3.4 years, which is
low. This can be explained by the fact that we used only one aging trajectory, and because
our model does not consider age spots.

Age spots could be incorporated in our model by creating a dedicated channel in our
system, as we did for wrinkles. Afterwards, pose parameters of each age spots shape could
be computed by fitting an ellipse to shapes and taking parameters of the fitted ellipses. Also,
pose parameters of each age spots appearance could be computed by taking their mean RGB
color. After that, we can carry out the same processing that we made for wrinkles. Firstly, to
estimate the probability density modeling the structure of age spots for each face and each
zone. Secondly, we can compute a PCA on our age spots representation vectors and connect
the output to the final PCA. Thus, aging trajectories would take into account age spots, in
addition to shape, appearance and wrinkles.

4 Conclusion

We presented a new framework to analyze facial aging taking into account shape, appear-
ance and wrinkles. We showed that the system can generate realistic faces for aging
and rejuvenating, and such age-progressed faces better influence age perception than
with Active Appearance Model or Conditional Adversarial Autoencoder. On average, we
demonstrated an improvement factor of 2.0 over prior works.
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Nevertheless, the model can be improved in several ways. Firstly, the realism of the faces
produced by the model has not been rated in this study. Moreover, we know that facial aging
is influenced by environmental factors like sun exposure, alcohol consumption or eating
practices [12, 19]. A potential improvement could be to compute multiple trajectories in
function of those factors. In addition, dark spots must be included in the model to increase
the accuracy of facial aging. We are confident that dark spots can be integrated in the same
way as wrinkles. This is the objective of future research.

Appendix
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